- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bandyopadhyay, Amit (2)
-
Ciliveri, Sushant (2)
-
Akdogan, Enver Koray (1)
-
Balla, Vamsi K (1)
-
Bose, Susmita (1)
-
Colombo, Paolo (1)
-
Franchin, Giorgia (1)
-
Guariento, Stefano (1)
-
Hogg, William W (1)
-
Ku, Nicholas (1)
-
Kushram, Priya (1)
-
Niu, Fangyong (1)
-
Pelz, Joshua (1)
-
Rosenberger, Andrew (1)
-
Safari, Ahmad (1)
-
Seeley, Zachary (1)
-
Trice, Rodney W (1)
-
Vargas‐Gonzalez, Lionel (1)
-
Youngblood, Jeffrey P (1)
-
Zuckschwerdt, Nathan (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this study, we measured the tensile, compression, and fatigue behavior of additively manufactured Ti3Al2V as a function of build orientation. Ti3Al2V alloy was prepared by mixing commercially pure titanium and Ti6Al4V in 1:1 wt. ratio. Laser powder bed fusion-based additive manufacturing technique was used to fabricate the samples. Tensile tests resulted in an ultimate strength of 989 ± 8 MPa for Ti3Al2V. Ti6Al4V 90° orientation samples showed a compressive yield strength of 1178 ± 33 MPa and that for Ti3Al2V 90° orientation samples were 968 ± 24 MPa. By varying the build orientation to account for anisotropy, Ti32 45° and Ti32 0° samples displayed almost similar compressive yield strength values of 1071 ± 16 and 1051 ± 18 MPa, respectively, which were higher than that of Ti32 90° sample. Fatigue loading revealed an endurance limit (10 million cycles) of 250 MPa for Ti6Al4V and of 219 MPa for Ti3Al2V built at 90° orientation. The effect of the build orientation was significant under fatigue loading; Ti3Al2V built at 45° and 0° orientations displayed endurance limits of 387.5 MPa and 512 MPa, respectively; more than two-fold increment in endurance limit was observed. In conclusion, the superior attributes of Ti3Al2V alloy over Ti6Al4V alloy, as demonstrated in this study, justify its potential in load-bearing applications, particularly for use in orthopedic devices.more » « less
-
Bose, Susmita; Akdogan, Enver Koray; Balla, Vamsi K; Ciliveri, Sushant; Colombo, Paolo; Franchin, Giorgia; Ku, Nicholas; Kushram, Priya; Niu, Fangyong; Pelz, Joshua; et al (, Journal of the American Ceramic Society)Abstract 3D printing (3DP) technologies have transformed the processing of advanced ceramics for small‐scale and custom designs during the past three decades. Simple and complex parts are designed and manufactured using 3DP technologies for structural, piezoelectric, and biomedical applications. Manufacturing simple or complex geometries or one‐of‐a‐kind components without part‐specific tooling saves significant time and creates new applications for advanced ceramic materials. Although development and innovations in 3DP of ceramics are far behind compared with metals or polymers, with the availability of different commercial machines in recent years for 3DP of ceramics, exponential growth is expected in this field in the coming decade. This article details various 3DP technologies for advanced ceramic materials, their advantages and challenges for manufacturing parts for various applications, and perspectives on future directions. We envision this work will be helpful to advanced ceramic researchers in industry and academia who are using different 3DP processes in the coming days.more » « less
An official website of the United States government
